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Summary: 2-Fluoro-2-deoxy-lns(1,4,5)Ps (2) and 2,2-difluoro-Z-deoxy-Ins(l,4,5)P, (3) were synthesized 

from protected inositol precursors. The monofluoro compound with free 3,6-hydroxyl groups underwent 

slow defluorination at pH 1 13, as determined by laF-NMR, while the difluoro compound was inert. 

Cells can communicate with one another in a number of ways. 1 For example, external messengers 

(hormones, growth factors, etc.) can bind to external receptors on a target cell, activating a second 

messenger system.2 A recently discovered second messenger is my@inositol-1,4,5-trisphosphate? (2) 

which arises from cleavage of a cell membrane component, phosphatidyl inositoL4,5bisphosphate, by a 

G protein-activated phospholipase C.4 Once released, the Ins(l,4,5)P, binds to specific receptors on the 

endoplasmic reticulum and stimulates the release of calcium from intracellular storage sites. 

2 3 

Fluorodeoxy sugars are molecules in which a C-OH is replaced by a C-F. Bond lengths and 

polarization are similar in both groups: however, the C-F bond can only accept but not donate a hydrogen 

bond.5 Such compounds are potentially useful as probes for studies of the active site of enzymes and for 

membrane transport studies. Several fluorodeoxy inositolss and a 2-deoxy-2-fluoro-1 -phosphatidyl-scy//o- 

inositolee have been reported. Recently, we reported the synthesis of 2-fluoro and 2,2-difluoro-2-deoxy 
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analogs of racemic Ins(i ,3,4)Ps, suspected to be either an alternative agonist or a by-product of 

Ins(l,4,5)P3 metabolism.7 We now describe the synthesis and chemical stability of two fluorodeoxy 

analogs (2 and z)of the second messenger Ins(l,4,5)Ps. - 
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Scheme 1. Synthesis of fluorodeoxy inositol phosphates. Reagents: (i) DAST, CH Cl , 0 OC; 
(ii) (Ph P)sRhCI, DABCO, EtOH; (iii) MeOH, H O+; (iv) ((BnO),P0)~0,~&l. DMF; 
(&,l$, Pd/C, Ha, EtOH; (vi) DMSO-Ac,O; (vii?DAST, CH&I,, 25 C; @ill) NaBH,, 
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The common intermediate for each synthesis was 1-0-allyl-3,6-di-0-benzyl-4,5-O-isopropylidene~ 

myuinositol~.* Scheme I summarizes the preparation of the fluorinated analogs. Reaction of protected 

cyclohexitoli with DAST in CH,CI, at 0 *C resulted in fluorination at the 2-position with inversion of 

configuration, yielding the corresponding 2-deoxy-2-fluoro-scyllo-inositol s (68%). The allyi group was 

isomerized to the I-propenyl ether& (as a mixture of E and Zisomers) using Wilkinson’s catalyst (Sl%), 

and then ether and isopropylidene groups were removed by mild acid hydrolysis (83%). The resulting 

2-deoxy-2-fluoro-1,4-di-0-benzyl-scylinositol g was phosphorylated using tetrabenzyl pyrophosphateg 

after generation of the trisanion with NaH in DMF at 0 *C, affording the perbenzylated species 5 in 44% 

yield. The eight benzyl groups were simultaneously removed by catalytic hydrogenolysis with Pd/C to yield 

2-deoxy-2-fluoro-scy//o-inositol-l,4,5trisphosphate (2) which was isolated as the ammonium salt. For - 

analysis and further studies it was converted to the hexasodium salt by ion-exchange chromatography.1o 

Oxidation of precursor 4 using acetic anhydride-DMSO afforded the unstable 2-inosose 2 in 66% yie1d.g - 

This was fluorinated using an excess of DAST in CH,CI, at 25 *C to give a 60% yield of 2,2-difluoro-I-O- 

allyl-3,6-di-0-benzyi-4,5-0-isopropylidene myo-inositol (5b). The same sequence of reactions - 

(5b --+ s -+D 2 --_, @ + 9) used for the monoiluoro derivative produced the desired 2,2-difluoro- 

myolns(l,4,5)P, (3)” via perbenzylated intermediate 8b. - 

The inosose 2 was reduced with sodium borohydride which furnished (95% yield) a 2:1 mixture of the 

my@ and scylloinositols derivatives @J and IO) which were readily separated by column chromatography 

on silica gel.12 When the scyllo epimer was treated with DAST in CH,CI, at 0 *C, fluorination occurred 

with retention of configuration and yielded the same 2-deoxy-2-fluoro-scyllo-inositol derivative g that was 

obtained from the myo-derivative. Although unusual, fluorination with retention of configuration when using 

DAST has been observed in a number of instances.13 

Although Ins(l,4,5)P3 (I) is reasonably stable in alkaline solution at 25 *C, the monofluoro derivative 

(2) was found to undergo a slow defluorination reaction on prolonged (> 4 weeks) storage under identical - 

conditions. Fluoride was produced (peak at -124 ppm in the lgF NMR) and a mixture of phosphates was 

formed. The difluoro analog 3, on the other hand, was stable under these conditions. The defluorination of - 

1 did not occur at pH 8; this reaction occurred at a reasonable rate only above pH 12. By following the 

reaction in a sealed NMR tube by ‘SF-NMR, the half life of monofluoro g at pH 13 was estimated to be 

2 weeks at 50 OC. 
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Since the ionization state of the phosphates is the same at both pH 8 and pH 13, i.e., both 2 and 2 

are hexaanions), we hypothesized that the neighboring hydroxyl group was involved in the defluorination. 

To test this, the two free hydroxyls were blocked as methyl ethers. The resulting Z-deoxy-2-fluoro-3,6-di-O- 

methyl-scyllo-inositol-1,4,5-trisphosphate l4 showed no evidence of defluorination at pH 13, 50 OC during 

several weeks, consistent with this hypothesis. 

Both monofluoro compound 2 and difluoro compound 2 show high affinity for the rat brain 

Ins(l,4,5)Ps receptor, and both activate calcium release from permeabilized cells in vitro.15 These results 

will be described elsewhere. 
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F x)3 . Z’P-NMR (D 0) 8 5.t 6.9 7.2. 
TBe epimeric alto 01s are readily separated by SiO, chromatography using 3:2 hexane-ether as 2 
eluent: Rf (1 :l hexane-ether) = 0.40 (es), 0.22 (ax). 
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lgF-NMR (D 0) 6 -193.8 (ddd, J = 52.9 Hz, J = 22.3 Hz, 3 = 
2.40, 2.43; &NMR (D&I) 6 3.50 (S, OCH ), 3.52 (S, OCH3). 
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